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Abstract—Instruction set simulators (ISSs) remain an essential
tool for the rapid exploration and evaluation of instruction set ex-
tensions in both academia and industry. Due to their importance
in both hardware and software design, modern ISSs must balance
a tension between developer productivity and high-performance
simulation. Productivity requirements have led to “ADL-driven”
toolflows that automatically generate ISSs from high-level ar-
chitectural description languages (ADLs). Meanwhile, perfor-
mance requirements have prompted ISSs to incorporate increas-
ingly complicated dynamic binary translation (DBT) techniques.
Construction of frameworks capable of providing both the produc-
tivity benefits of ADL-generated simulators and the performance
benefits of DBT remains a significant challenge.

We introduce Pydgin, a new approach to ISS construction that
addresses the multiple challenges of designing, implementing, and
maintaining ADL-generated DBT-ISSs. Pydgin uses a Python-
based, embedded-ADL to succinctly describe instruction behavior
as directly executable “pseudocode”. These Pydgin ADL descrip-
tions are used to automatically generate high-performance DBT-
ISSs by creatively adapting an existing meta-tracing JIT compila-
tion framework designed for general-purpose dynamic program-
ming languages. We demonstrate the capabilities of Pydgin by im-
plementing ISSs for two instruction sets and show that Pydgin pro-
vides concise, flexible ISA descriptions while also generating simu-
lators with performance comparable to hand-coded DBT-ISSs.

I. INTRODUCTION

Recent challenges in CMOS technology scaling have mo-
tivated an increasingly fluid boundary between hardware and
software. Examples include new instructions for managing fine-
grain parallelism, new programmable data-parallel engines,
programmable accelerators based on reconfigurable coarse-
grain arrays, domain-specific co-processors, and application-
specific instructions. This trend towards heterogeneous hard-
ware/software abstractions combined with complex design tar-
gets is placing increasing importance on highly productive and
high-performance instruction set simulators (ISSs).

Unfortunately, meeting the multitude of design requirements
for a modern ISS (observability, retargetability, extensibility,
support for self-modifying code, etc.) while also providing
productivity and high performance has led to considerable ISS
design complexity. Highly productive ISSs have adopted ar-
chitecture description languages (ADLs) as a means to en-
able abstract specification of instruction semantics and sim-
plify the addition of new instruction set features. The ADLs
in these frameworks are domain specific languages constructed
to be sufficiently expressive for describing traditional archi-
tectures, yet restrictive enough for efficient simulation (e.g.,
ArchC [3,50], LISA [33,55], LIS [34], MADL [43,44], SimIt-
ARM ADL [21, 40]). In addition, high-performance ISSs use
dynamic binary translation (DBT) to discover frequently exe-
cuted blocks of target instructions and convert these blocks into
optimized sequences of host instructions. DBT-ISSs often re-
quire a deep understanding of the target instruction set in order

to enable fast and efficient translation. However, promising re-
cent work has demonstrated sophisticated frameworks that can
automatically generate DBT-ISSs from ADLs [35, 42, 56].

Meanwhile, designers working on interpreters for general-
purpose dynamic programming languages (e.g., Javascript,
Python, Ruby, Lua, Scheme) face similar challenges balancing
productivity of interpreter developers with performance of the
interpreter itself. The highest performance interpreters use just-
in-time (JIT) trace- or method-based compilation techniques.
As the sophistication of these techniques have grown so has
the complexity of interpreter codebases. For example, the We-
bKit Javascript engine currently consists of four distinct tiers
of JIT compilers, each designed to provide greater amounts
of optimization for frequently visited code regions [37]. In
light of these challenges, one promising approach introduced
by the PyPy project uses meta-tracing to greatly simplify the
design of high-performance interpreters for dynamic languages.
PyPy’s meta-tracing toolchain takes traditional interpreters im-
plemented in RPython, a restricted subset of Python, and auto-
matically translates them into optimized, tracing-JIT compil-
ers [2, 9, 10, 36, 39]. The RPython translation toolchain has
been previously used to rapidly develop high-performance JIT-
enabled interpreters for a variety of different languages [11–
13, 24, 51, 52, 54]. We make the key observation that similar-
ities between ISSs and interpreters for dynamic programming
languages suggest that the RPython translation toolchain might
enable similar productivity and performance benefits when ap-
plied to instruction set simulator design.

This paper introduces Pydgin1, a new approach to ISS design
that combines an embedded-ADL with automatically-generated
meta-tracing JIT interpreters to close the productivity-
performance gap for future ISA design. The Pydgin library
provides an embedded-ADL within RPython for succinctly de-
scribing instruction semantics, and also provides a modular in-
struction set interpreter that leverages these user-defined in-
struction definitions. In addition to mapping closely to the
pseudocode-like syntax of ISA manuals, Pydgin instruction de-
scriptions are fully executable within the Python interpreter for
rapid code-test-debug during ISA development. We adapt the
RPython translation toolchain to take Pydgin ADL descriptions
and automatically convert them into high-performance DBT-
ISSs. Building the Pydgin framework required approximately
three person-months worth of work, but implementing two dif-
ferent instruction sets (a simple MIPS-based instruction set and
a more sophisticated ARMv5 instruction set) took just a few
weeks and resulted in ISSs capable of executing many of the

1Pydgin loosely stands for [Py]thon [D]SL for [G]enerating [In]struction set
simulators and is pronounced the same as “pigeon”. The name is inspired by
the word “pidgin” which is a grammatically simplified form of language and
captures the intent of the Pydgin embedded-ADL.



1 jd = JitDriver( greens = [’bytecode’, ’pc’],
2 reds = [’regs’, ’acc’] )
3

4 def interpreter( bytecode ):
5 regs = [0]*256 # vm state: 256 registers
6 acc = 0 # vm state: accumulator
7 pc = 0 # vm state: program counter
8

9 while True:
10 jd.jit_merge_point( bytecode, pc, regs, acc )
11 opcode = ord(bytecode[pc])
12 pc += 1
13

14 if opcode == JUMP_IF_ACC:
15 target = ord(bytecode[pc])
16 pc += 1
17 if acc:
18 if target < pc:
19 jd.can_enter_jit( bytecode, pc, regs, acc )
20 pc = target
21

22 elif opcode == MOV_ACC_TO_REG:
23 rs = ord(bytecode[pc])
24 regs[rs] = acc
25 pc += 1
26

27 # ... handle remaining opcodes ...

Figure 1. Simple Bytecode Interpreter Written in RPython – bytecode is string
of bytes encoding instructions that operate on 256 registers and an accumulator.
RPython enables succinct interpreter descriptions that can still be automatically
translated into C code. Basic annotations (shown in blue) enable automatically
generating a meta-tracing JIT compiler. Adapted from [10].

SPEC CINT2006 benchmarks at hundreds of millions of in-
structions per second.

This paper makes the following three contributions: (1) we
describe the Pydgin embedded-ADL for productively specify-
ing instruction set architectures; (2) we describe and quan-
tify the performance impact of specific optimization techniques
used to generate high-performance DBT-ISSs from the RPython
translation toolchain; and (3) we evaluate the performance of
Pydgin DBT-ISSs when running SPEC CINT2006 applications
on two distinct ISAs.

II. THE RPYTHON TRANSLATION TOOLCHAIN

The increase in popularity of dynamic programming lan-
guages has resulted in a significant interest in high-performance
interpreter design. Perhaps the most notable examples include
the numerous JIT-optimizing JavaScript interpreters present in
modern browsers today. Another example is PyPy, a JIT-
optimizing interpreter for the Python programming language.
PyPy uses JIT compilation to improve the performance of hot
loops, often resulting in considerable speedups over the refer-
ence Python interpreter, CPython. The PyPy project has cre-
ated a unique development approach that utilizes the RPython
translation toolchain to abstract the process of language inter-
preter design from low-level implementation details and perfor-
mance optimizations. The RPython translation toolchain en-
ables developers to describe an interpreter in a restricted subset
of Python (called RPython) and then automatically translate this
RPython interpreter implementation into a C executable. With
the addition of a few basic annotations, the RPython translation
toolchain can also automatically insert a tracing-JIT compiler
into the generated C-based interpreter. In this section, we briefly
describe the RPython translation toolchain, which we leverage
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Figure 2. RPython Translation Toolchain – (a) the static translation toolchain
converts an RPython interpreter into C code along with a generated JIT com-
piler; (b) the meta-tracing JIT compiler traces the interpreter (not the applica-
tion) to eventually generate optimized assembly for native execution.

as the foundation for the Pydgin framework. More detailed in-
formation about RPython and the PyPy project in general can
be found in [2, 8–10, 36, 39].

Python is a dynamically typed language with typed objects
but untyped variable names. RPython is a carefully chosen
subset of Python that enables static type inference such that
the type of both objects and variable names can be determined
at translation time. Even though RPython sacrifices some of
Python’s dynamic features (e.g., duck typing, monkey patching)
it still maintains many of the features that make Python produc-
tive (e.g., simple syntax, automatic memory management, large
standard library). In addition, RPython supports powerful meta-
programming allowing full-featured Python code to be used to
generate RPython code at translation time.

Figure 1 shows a simple bytecode interpreter and illustrates
how interpreters written in RPython can be significantly simpler
than a comparable interpreter written in C (example adapted
from [10]). The example is valid RPython because the type of
all variables can be determined at translation time (e.g., regs,
acc, and pc are always of type int; bytecode is always of type
str). Figure 2(a) shows the RPython translation toolchain. The
elaboration phase can use full-featured Python code to gener-
ate RPython source as long as the interpreter loop only contains
valid RPython prior to starting the next phase of translation. The
type inference phase uses various algorithms to determine high-
level type information about each variable (e.g., integers, real
numbers, user-defined types) before lowering this type informa-
tion into an annotated intermediate representation (IR) with spe-
cific C datatypes (e.g., int, long, double, struct). The back-
end optimization phase leverages standard optimization passes
to inline functions, remove unnecessary dynamic memory allo-
cation, implement exceptions efficiently, and manage garbage
collection. The code generation phase translates the optimized
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Figure 3. Pydgin Simulation – Pydgin ISA descriptions are imported by the Pyd-
gin simulation driver which defines the top-level interpreter loop. The resulting
Pydgin ISS can be executed directly using (a) the reference CPython interpreter
or (b) the higher-performance PyPy JIT-optimizing interpreter. Alternatively,
the interpreter loop can be passed to the RPython translation toolchain to gener-
ate a C-based executable implementing (c) an interpretive ISS or (d) a DBT-ISS.

IR into C source code, before the compilation phase generates
the C-based interpreter.

The RPython translation toolchain also includes support for
automatically generating a tracing JIT compiler to complement
the generated C-based interpreter. To achieve this, the RPython
toolchain uses a novel meta-tracing approach where the JIT
compiler does not directly trace the bytecode but instead traces
the interpreter interpreting the bytecode. While this may ini-
tially seem counter-intuitive, meta-tracing JIT compilers are the
key to improving productivity and performance. This approach
decouples the design of the interpreter, which can be written in
a high-level dynamic language such as RPython, from the com-
plexity involved in implementing a tracing JIT compiler for that
interpreter. A direct consequence of this separation of concerns
is that interpreters for different languages can all leverage the
exact same JIT compilation framework as long as these inter-
preters make careful use of meta-tracing annotations.

Figure 1 highlights the most basic meta-tracing annotations
required to automatically generate reasonable JIT compilers.
The JitDriver object instantiated on lines 1–2 informs the
JIT of which variables identify the interpreter’s position within
the target application’s bytecode (greens), and which variables
are not part of the position key (reds). The can_enter_jit
annotation on line 19 tells the JIT where an application-
level loop (i.e., a loop in the actual bytecode application) be-
gins; it is used to indicate backwards-branch bytecodes. The
jit_merge_point annotation on line 10 tells the JIT where it
is safe to move from the JIT back into the interpreter; it is used
to identify the top of the interpreter’s dispatch loop. As shown
in Figure 2(a), the JIT generator replaces the can_enter_jit
hints with calls into the JIT runtime and then serializes the an-
notated IR for all code regions between the meta-tracing an-
notations. These serialized IR representations are called “jit-
codes” and are integrated along with the JIT runtime into the C-
based interpreter. Figure 2(b) illustrates how the meta-tracing
JIT compiler operates at runtime. When the C-based interpreter

reaches a can_enter_jit hint, it begins using the correspond-
ing jitcode to build a meta-trace of the interpreter interpret-
ing the bytecode application. When the same can_enter_jit
hint is reached again, the JIT increments an internal per-loop
counter. Once this counter exceeds a threshold, the collected
trace is handed off to a JIT optimizer and assembler before ini-
tiating native execution. The meta-traces include guards that
ensure the dynamic conditions under which the meta-trace was
optimized still hold (e.g., the types of application-level variables
remain constant). If at any time a guard fails or if the optimized
loop is finished, then the JIT returns control back to the C-based
interpreter at a jit_merge_point.

Figure 3 illustrates how the RPython translation toolchain is
leveraged by the Pydgin framework. Once an ISA has been
specified using the Pydgin embedded-ADL (described in Sec-
tion III) it is combined with the Pydgin simulation driver, which
provides a modular, pre-defined interpreter implementation, to
create an executable Pydgin instruction set simulator. Each Py-
dgin ISS is valid RPython that can be executed in a number
of ways. The most straightforward execution is direct interpre-
tation using CPython or PyPy. Although interpreted execution
provides poor simulation performance, it serves as a particularly
useful debugging platform during early stages of ISA develop-
ment and testing. Alternatively, the Pydgin ISS can be passed as
input to the RPython translation toolchain in order to generate a
compiled executable implementing either an interpretive ISS or
a high-performance DBT-ISS (described in Section IV).

III. THE PYDGIN EMBEDDED-ADL

To evaluate the capabilities of the Pydgin framework, we use
Pydgin to implement instruction set simulators for two ISAs:
a simplified version of MIPS32 called SMIPS, and the more
complex ARMv5 ISA. This process involves using the Pydgin
embedded-ADL to describe the architectural state, instruction
encoding, and instruction semantics of each ISA. No special
parser is needed to generate simulators from Pydgin ISA def-
initions, and in fact these definitions can be executed directly
using a standard Python interpreter. In this section, we describe
the various components of the Pydgin embedded-ADL using the
ARMv5 ISA as an example.

A. Architectural State

Architectural state in Pydgin is implemented using Python
classes. Figure 4 shows a simplified version of this state
for the ARMv5 ISA. Library components provided by the
Pydgin embedded-ADL such as RegisterFile and Memory
classes can be used as provided or subclassed to suit the spe-
cific needs of a particular architecture. For example, the
ArmRegisterFile on line 5 subclasses the RegisterFile
component (not shown) and specializes it for the unique id-
iosyncrasies of the ARM architecture: within instruction se-
mantic definitions register 15 must update the current PC when
written but return PC+8 when read. The fetch_pc accessor
on line 10 is used to retrieve the current instruction address,
which is needed for both instruction fetch and incrementing
the PC in instruction semantic definitions (discussed in Sec-
tion III-C). Users may also implement their own data structures,
however, these data structures must conform to the restrictions



1 class State( object ):
2 _virtualizable_ = ['pc', 'ncycles']
3 def __init__( self, memory, debug, reset_addr=0x400 ):
4 self.pc = reset_addr
5 self.rf = ArmRegisterFile( self, num_regs=16 )
6 self.mem = memory
7

8 self.rf[ 15 ] = reset_addr
9

10 # current program status register (CPSR)
11 self.N = 0b0 # Negative condition
12 self.Z = 0b0 # Zero condition
13 self.C = 0b0 # Carry condition
14 self.V = 0b0 # Overflow condition
15

16 # simulator/stats info, not architecturally visible
17 self.status = 0
18 self.ncycles = 0
19

20 def fetch_pc( self ):
21 return self.pc

Figure 4. Simplified ARMv5 Architectural State Description

1 encodings = [
2 ['nop', '00000000000000000000000000000000'],
3 ['mul', 'xxxx0000000xxxxxxxxxxxxx1001xxxx'],
4 ['umull', 'xxxx0000100xxxxxxxxxxxxx1001xxxx'],
5 ['adc', 'xxxx00x0101xxxxxxxxxxxxxxxxxxxxx'],
6 ['add', 'xxxx00x0100xxxxxxxxxxxxxxxxxxxxx'],
7 ['and', 'xxxx00x0000xxxxxxxxxxxxxxxxxxxxx'],
8 ['b', 'xxxx1010xxxxxxxxxxxxxxxxxxxxxxxx'],
9 ...

10 ['teq', 'xxxx00x10011xxxxxxxxxxxxxxxxxxxx'],
11 ['tst', 'xxxx00x10001xxxxxxxxxxxxxxxxxxxx'],
12 ]

Figure 5. Partial ARMv5 Instruction Encoding Table

imposed by the RPython translation toolchain. The class mem-
ber _virtualizable_ is an optional JIT annotation used by
the RPython translation toolchain. We discuss this and other
advanced JIT annotations in more detail in Section IV.

B. Instruction Encoding
Pydgin maintains encodings of all instructions in a central-

ized data structure for easy maintenance and quick lookup. A
partial encoding table for the ARMv5 instruction set can be seen
in Figure 5. While some ADLs keep this encoding information
associated with the each instruction’s semantic definition (e.g.,
SimIt-ARM’s definitions in Figure 8), we have found that this
distributed organization makes it more difficult to quickly assess
available encodings for introducing ISA extensions. However,
ISA designers preferring this distributed organization can eas-
ily implement it using Python decorators to annotate instruction
definitions with their encoding. This illustrates the power of
using an embedded-ADL where arbitrary Python code can be
used for metaprogramming. Encodings and instruction names
provided in the instruction encoding table are used by Pydgin to
automatically generate decoders for the simulator. Unlike some
ADLs, Pydgin does not require the user to explicitly specify in-
struction types or mask bits for field matching because Pydgin
can automatically infer field locations from the encoding table.

C. Instruction Semantics
Pydgin instruction semantic definitions are implemented

using normal Python functions with the special signature

1 if ConditionPassed(cond) then
2 Rd = Rn + shifter_operand
3 if S == 1 and Rd == R15 then
4 if CurrentModeHasSPSR() then CPSR = SPSR
5 else UNPREDICTABLE else if S == 1 then
6 N Flag = Rd[31]
7 Z Flag = if Rd == 0 then 1 else 0
8 C Flag = CarryFrom(Rn + shifter_operand)
9 V Flag = OverflowFrom(Rn + shifter_operand)

Figure 6. ADD Instruction Semantics: ARM ISA Manual

1 def execute_add( s, inst ):
2 if condition_passed( s, inst.cond() ):
3 a = s.rf[ inst.rn() ]
4 b, cout = shifter_operand( s, inst )
5

6 result = a + b
7 s.rf[ inst.rd() ] = trim_32( result )
8

9 if inst.S():
10 if inst.rd() == 15:
11 raise Exception('Writing SPSR not implemented!')
12 s.N = (result >> 31)&1
13 s.Z = trim_32( result ) == 0
14 s.C = carry_from( result )
15 s.V = overflow_from_add( a, b, result )
16

17 if inst.rd() == 15:
18 return
19

20 s.rf[PC] = s.fetch_pc() + 4

Figure 7. ADD Instruction Semantics: Pydgin

execute_<inst_name> (s,inst). The function parameters
s and inst refer to the architectural state and the instruction
bits, respectively. An example of a Pydgin instruction defini-
tion is shown for the ARMv5 ADD instruction in Figure 7. Pyd-
gin allows users to create helper functions that refactor com-
plex operations common across many instruction definitions.
For example, condition_passed on line 2 performs predica-
tion checks, while shifter_operand on line 4 encapsulates
ARMv5’s complex rules for computing the secondary operand
b and computes a special carry out condition needed by some
instructions (stored in cout). This encapsulation provides the
secondary benefit of helping Pydgin definitions better match the
instruction semantics described in ISA manuals. Note that the
Pydgin definition for ADD is a fairly close match to the instruc-
tion specification pseudocode provided in the official ARM ISA
manual, shown in Figure 6.

Figure 8 shows another description of the ADD instruction
in the SimIt-ARM ADL, a custom, lightweight ADL used by
the open source SimIt-ARM simulator to generate both inter-
pretive and DBT ISSs [21]. In comparison to the SimIt-ARM
ADL, Pydgin is slightly less concise as a consequence of using
an embedded-ADL rather than implementing a custom parser.
The SimIt-ARM description implements ADD as four separate
instructions in order to account for the S and I instruction bits.
These bits determine whether condition flags are updated and
if a rotate immediate addressing mode should be used, respec-
tively. This multi-instruction approach is presumably done for
performance reasons as splitting the ADD definition into sepa-
rate instructions results in simpler decode and less branching
behavior during simulation. However, this approach incurs ad-



1 op add(----00001000:rn:rd:shifts) {
2 execute="
3 WRITE_REG($rd$, READ_REG($rn$) + $shifts$);
4 "
5 }
6

7 op adds(----00001001:rn:rd:shifts) {
8 execute="
9 tmp32 = $shifts$; val32 = READ_REG($rn$);

10 rslt32 = val32 + tmp32;
11 if ($rd$==15) WRITE_CPSR(SPSR);
12 else ASGN_NZCV(rslt32, rslt32<val32,
13 (val32^tmp32^-1) & (val32^rslt32));
14 WRITE_REG($rd$, rslt32);
15 "
16 }
17

18 op addi(----00101000:rn:rd:rotate_imm32) {
19 execute="
20 WRITE_REG($rd$, READ_REG($rn$) + $rotate_imm32$);
21 "
22 }
23

24 op addis(----00101001:rn:rd:rotate_imm32) {
25 execute="
26 tmp32 = $rotate_imm32$; val32 = READ_REG($rn$);
27 rslt32 = val32 + tmp32;
28 if ($rd$==15) WRITE_CPSR(SPSR);
29 else ASGN_NZCV(rslt32, rslt32<val32,
30 (val32^tmp32^-1) & (val32^rslt32));
31 WRITE_REG($rd$, rslt32);
32 "
33 }

Figure 8. ADD Instruction Semantics: SimIt-ARM

ditional overhead in terms of clarity and maintainability. Pyd-
gin largely avoids the need for these optimizations thanks to its
meta-tracing JIT compiler that can effectively optimize away
branching behavior for hot paths. This works particularly well
for decoding instruction fields such as the ARM conditional bits
and the S and I flags: for non-self modifying code an instruc-
tion at a particular PC will always have the same instruction
bits, enabling the JIT to completely optimize away this com-
plex decode overhead.

An ArchC description of the ADD instruction can be seen in
Figure 9. Note that some debug code has been removed for the
sake of brevity. ArchC is an open source, SystemC-based ADL
popular in system-on-chip toolflows [3, 50]. ArchC has consid-
erably more syntactic overhead than both the SimIt-ARM ADL
and Pydgin embedded-ADL. Much of this syntactic overhead
is due to ArchC’s C++-style description which requires explicit
declaration of complex templated types. One significant advan-
tage ArchC’s C++-based syntax has over SimIt-ARM’s ADL
is that it is compatible with existing C++ development tools.
Pydgin benefits from RPython’s dynamic typing to produce a
comparatively cleaner syntax while also providing compatibil-
ity with Python development tools.

D. Benefits of an Embedded-ADL

While the dynamic nature of Python enables Pydgin to pro-
vide relatively concise, pseudo-code-like syntax for describing
instructions, it could be made even more concise by implement-
ing a DSL which uses a custom parser. From our experience,
embedded-ADLs provide a number of advantages over a cus-
tom DSL approach: increased language familiarity and a gen-

1 inline void ADD(arm_isa* ref, int rd, int rn, bool s,
2 ac_regbank<31, arm_parms::ac_word,
3 arm_parms::ac_Dword>& RB,
4 ac_reg<unsigned>& ac_pc) {
5

6 arm_isa::reg_t RD2, RN2;
7 arm_isa::r64bit_t soma;
8

9 RN2.entire = RB_read(rn);
10 if(rn == PC) RN2.entire += 4;
11 soma.hilo = (uint64_t)(uint32_t)RN2.entire +
12 (uint64_t)(uint32_t)ref->dpi_shiftop.entire;
13 RD2.entire = soma.reg[0];
14 RB_write(rd, RD2.entire);
15 if ((s == 1)&&(rd == PC)) {
16 #ifndef FORGIVE_UNPREDICTABLE
17 ...
18 ref->SPSRtoCPSR();
19 #endif
20 } else {
21 if (s == 1) {
22 ref->flags.N = getBit(RD2.entire,31);
23 ref->flags.Z = ((RD2.entire==0) ? true : false);
24 ref->flags.C = ((soma.reg[1]!=0) ? true : false);
25 ref->flags.V = (((getBit(RN2.entire,31)
26 && getBit(ref->dpi_shiftop.entire,31)
27 && (!getBit(RD2.entire,31)))
28 || ((!getBit(RN2.entire,31))
29 && (!getBit(ref->dpi_shiftop.entire,31))
30 && getBit(RD2.entire,31))) ? true : false);
31 }
32 }
33 ac_pc = RB_read(PC);
34 }

Figure 9. ADD Instruction Semantics: ArchC

tler learning curve for new users; access to better development
tools and debugging facilities; and easier maintenance and ex-
tension by avoiding a custom parser. Additionally, we have
found that the ability to directly execute Pydgin ADL descrip-
tions in a standard Python interpreter such as CPython or PyPy
significantly helps debugging and testing during initial ISA ex-
ploration.

IV. PYDGIN JIT GENERATION AND OPTIMIZATIONS

It is not immediately obvious that a JIT framework designed
for general-purpose dynamic languages will be suitable for con-
structing fast instruction set simulators. In fact, a DBT-ISS gen-
erated by the RPython translation toolchain using only the basic
JIT annotations shown in Figure 10 provides good but not ex-
ceptional performance. This is because the JIT must often use
worst-case assumptions about interpreter behavior. For exam-
ple, the JIT must assume that functions might have side effects,
variables are not constants, loop bounds might change, and ob-
ject fields should be stored in memory. These worst-case as-
sumptions reduce opportunities for JIT optimization and thus
reduce the overall JIT performance.

Existing work on the RPython translation toolchain has
demonstrated the key to improving JIT performance is the care-
ful insertion of advanced annotations that provide the JIT high-
level hints about interpreter behavior [9, 10]. We use a simi-
lar technique by adding annotations to the Pydgin framework
specifically chosen to provide ISS-specific hints. Most of these
advanced JIT annotations are completely self-contained within
the Pydgin framework itself. Annotations encapsulated in this
way can be leveraged across any instruction set specified using



1 jd = JitDriver( greens = [’pc’], reds = [’state’],
2 virtualizables = [’state’] )
3

4 class State( object ):
5 _virtualizable_ = [’pc’, ’ncycles’]
6 def __init__( self, memory, reset_addr=0x400 ):
7 self.pc = reset_addr
8 self.ncycles = 0
9 # ... more architectural state ...

10

11 class Memory( object ):
12 def __init__( self, size=2**10 ):
13 self.size = size << 2
14 self.data = [0] * self.size
15

16 def read( self, start_addr, num_bytes ):
17 word = start_addr >> 2
18 byte = start_addr & 0b11
19 if num_bytes == 4:
20 return self.data[ word ]
21 elif num_bytes == 2:
22 mask = 0xFFFF << (byte * 8)
23 return (self.data[ word ] & mask) >> (byte * 8)
24 # ... handle single byte read ...
25

26 @elidable
27 def iread( self, start_addr, num_bytes ):
28 return self.data[ start_addr >> 2 ]
29

30 # ... rest of memory methods ...
31

32 def run( state, max_insts=0 ):
33 s = state
34 while s.status == 0:
35 jd.jit_merge_point( s.fetch_pc(), max_insts, s )
36

37 pc = hint( s.fetch_pc(), promote=True )
38 old = pc
39 mem = hint( s.mem, promote=True )
40

41 inst = mem.iread( pc, 4 )
42 exec_fun = decode( inst )
43 exec_fun( s, inst )
44

45 s.ncycles += 1
46

47 if s.fetch_pc() < old:
48 jd.can_enter_jit( s.fetch_pc(), max_insts, s )
49

Figure 10. Simplified Instruction Set Interpreter Written in RPython – Although
only basic annotations (shown in blue) are required by the RPython transla-
tion toolchain to produce a JIT, more advanced annotations (shown in red) are
needed to successfully generate efficient DBT-ISSs.

the Pydgin embedded-ADL without any manual customization
of instruction semantics by the user. Figure 10 shows a sim-
plified version of the Pydgin interpreter with several of these
advanced JIT annotations highlighted.

We use several applications from SPEC CINT2006 compiled
for the ARMv5 ISA to demonstrate the impact of six advanced
JIT annotations key to producing high-performance DBT-ISSs
with the RPython translation toolchain. These advanced annota-
tions include: (1) elidable instruction fetch; (2) elidable decode;
(3) constant promotion of memory and PC; (4) word-based tar-
get memory; (5) loop unrolling in instruction semantics; and
(6) virtualizable PC. Figure 13 shows the speedups achieved
as these advanced JIT annotations are gradually added to the
Pydgin framework. Speedups are normalized against a Pydgin
ARMv5 DBT-ISS using only basic JIT annotations. Figures 11

1 # Byte accesses for instruction fetch
2 i1 = getarrayitem_gc(p6, 33259)
3 i2 = int_lshift(i1, 8)
4 # ... 8 more JIT IR nodes ...
5
6 # Decode function call
7 p1 = call(decode, i3)
8 guard_no_exception()
9 i4 = getfield_gc_pure(p1)

10 guard_value(i4, 4289648)
11
12 # Accessing instruction fields
13 i5 = int_rshift(i3, 28)
14 guard_value(i5, 14)
15 i6 = int_rshift(i3, 25)
16 i7 = int_and(i6, 1)
17 i8 = int_is_true(i7)
18 # ... 11 more JIT IR nodes ...
19

20 # Read from regfile
21 i10 = getarrayitem_gc(p2, i9)
22
23 # Register offset calculation
24 i11 = int_and(i10, 0xffffff)
25 i12 = int_rshift(i3, 16)
26 i13 = int_and(i12, 15)
27 i14 = int_eq(i13, 15)
28 guard_false(i14)
29

30 # Read from regfile
31 i15 = getarrayitem_gc(p2, i13)

32 # Addressing mode
33 i15 = int_rshift(i3, 23)
34 i16 = int_and(i15, 1)
35 i17 = int_is_true(i16)
36 # ... 13 more JIT IR nodes ...
37
38 # Access mem with byte reads
39 i19 = getarrayitem_gc(p6, i18)
40 i20 = int_lshift(i19, 8)
41 i22 = int_add(i21, 2)
42 # ... 13 more JIT IR nodes ...
43

44 # Write result to regfile
45 setarrayitem_gc(p2, i23, i24)
46
47 # Update PC
48 i25 = getarrayitem_gc(p2, 15)
49 i26 = int_add(i25, 4)
50 setarrayitem_gc(p2, 15, i26)
51 i27 = getarrayitem_gc(p2, 15)
52 i28 = int_lt(i27, 33256)
53 guard_false(i28)
54 guard_value(i27, 33260)
55
56 # Update cycle count
57 i30 = int_add(i29, 1)
58 setfield_gc(p0, i30)

Figure 11. Unoptimized JIT IR for ARMv5 LDR Instruction – When provided
with only basic JIT annotations, the meta-tracing JIT compiler will translate the
LDR instruction into 79 JIT IR nodes.

1 i1 = getarrayitem_gc(p2, 0) # register file read
2 i2 = int_add(i1, i8) # address computation
3 i3 = int_and(i2, 0xffffffff) # bit masking
4 i4 = int_rshift(i3, 2) # word index
5 i5 = int_and(i3, 0x00000003) # bit masking
6 i6 = getarrayitem_gc(p1, i4) # memory access
7 i7 = int_add(i8, 1) # update cycle count

Figure 12. Optimized JIT IR for ARMv5 LDR Instruction – Pydgin’s advanced
JIT annotations enable the meta-tracing JIT compiler to optimize the LDR in-
struction to just seven JIT IR nodes.

and 12 concretely illustrate how the introduction of these ad-
vanced JIT annotations reduce the JIT IR generated for a single
LDR instruction from 79 IR nodes down to only 7 IR nodes. In
the rest of this section, we describe how each advanced anno-
tation specifically contributes to this reduction in JIT IR nodes
and enables the application speedups shown in Figure 13.

Elidable Instruction Fetch – RPython allows functions to be
marked trace elidable using the @elidable decorator. This an-
notation guarantees a function will not have any side effects and
therefore will always return the same result if given the same ar-
guments. If the JIT can determine that the arguments to a trace
elidable function are likely constant, then the JIT can use con-
stant folding to replace the function with its result and a series of
guards to verify that the arguments have not changed. When ex-
ecuting programs without self-modifying code, the Pydgin ISS
benefits from marking instruction fetches as trace elidable since
the JIT can then assume the same instruction bits will always be
returned for a given PC value. While this annotation, seen on
line 26 in Figure 10, can potentially eliminate 10 JIT IR nodes
on lines 1–4 in Figure 11, it shows negligible performance ben-
efit in Figure 13. This is because the benefits of elidable instruc-
tion fetch are not realized until combined with other symbiotic
annotations like elidable decode.



Figure 13. Impact of JIT Annotations – Including advanced annotations in the RPython interpreter allows our generated ISS to perform more aggressive JIT
optimizations. However, the benefits of these optimizations varies from benchmark to benchmark. Above we show how incrementally combining several advanced
JIT annotations impacts ISS performance when executing several SPEC CINT2006 benchmarks. Speedups are normalized against a Pydgin ARMv5 DBT-ISS using
only basic JIT annotations.

Elidable Decode – Previous work has shown efficient in-
struction decoding is one of the more challenging aspects of
designing fast ISSs [23, 27, 41]. Instruction decoding interprets
the bits of a fetched instruction in order to determine which ex-
ecution function should be used to properly emulate the instruc-
tion’s semantics. In Pydgin, marking decode as trace elidable
allows the JIT to optimize away all of the decode logic since
a given set of instruction bits will always map to the same ex-
ecution function. Elidable decode can potentially eliminate 20
JIT IR nodes on lines 6–18 in Figure 11. The combination of
elidable instruction fetch and elidable decode shows the first
performance increase for many applications in Figure 13.

Constant Promotion of PC and Target Memory – By de-
fault, the JIT cannot assume that the pointers to the PC and the
target memory within the interpreter are constant, and this re-
sults in expensive and potentially unnecessary pointer derefer-
ences. Constant promotion is a technique that converts a vari-
able in the JIT IR into a constant plus a guard, and this in turn
greatly increases opportunities for constant folding. The con-
stant promotion annotations can be seen on lines 37–39 in Fig-
ure 10. Constant promotion of the PC and target memory is
critical for realizing the benefits of the elidable instruction fetch
and elidable decode optimizations mentioned above. When all
three optimizations are combined the entire fetch and decode
logic (i.e., lines 1–18 in Figure 11) can truly be removed from
the optimized trace. Figure 13 shows how all three optimiza-
tions work together to increase performance by 5⇥ on average
and up to 25⇥ on 429.mcf. Only 464.h264ref has shown no
performance improvements up to this point.

Word-Based Target Memory – Because modern processors
have byte-addressable memories the most intuitive representa-
tion of this target memory is a byte container, analogous to a
char array in C. However, the common case for most user pro-
grams is to use full 32-bit word accesses rather than byte ac-
cesses. This results in additional access overheads in the in-
terpreter for the majority of load and store instructions. As
an alternative, we represent the target memory using a word
container. While this incurs additional byte masking overheads
for sub-word accesses, it makes full word accesses significantly
cheaper and thus improves performance of the common case.
Lines 11–24 in Figure 10 illustrates our target memory data
structure which is able to transform the multiple memory ac-
cesses and 16 JIT IR nodes in lines 38–42 of Figure 11 into
the single memory access on line 6 of Figure 12. The num-
ber and kind of memory accesses performed influence the ben-
efits of this optimization. In Figure 13 most applications see

a small benefit, outliers include 401.bzip2 which experiences a
small performance degradation and 464.h264ref which receives
a large performance improvement.

Loop Unrolling in Instruction Semantics – The RPython
toolchain conservatively avoids inlining function calls that con-
tain loops since these loops often have different bounds for each
function invocation. A tracing JIT attempting to unroll and op-
timize such loops will generally encounter a high number of
guard failures, resulting in significant degradation of JIT perfor-
mance. The stm and ldm instructions of the ARMv5 ISA use
loops in the instruction semantics to iterate through a register
bitmask and push or pop specified registers to the stack. An-
notating these loops with the @unroll_safe decorator allows
the JIT to assume that these loops have static bounds and can
safely be unrolled. One drawback of this optimization is that
it is specific to the ARMv5 ISA and currently requires modi-
fying the actual instruction semantics, although we believe this
requirement can be removed in future versions of Pydgin. The
majority of applications in Figure 13 see only a minor improve-
ment from this optimization, however, both 462.libquantum and
429.mcf receive a significant improvement from this optimiza-
tion suggesting that they both include a considerable amount of
stack manipulation.

Virtualizable PC and Statistics – State variables in the
interpreter that change frequently during program execution
(e.g., the PC and statistics counters) incur considerable execu-
tion overhead because the JIT conservatively implements object
member access using relatively expensive loads and stores. To
address this limitation, RPython allows some variables to be
annotated as virtualizable. Virtualizable variables can be stored
in registers and updated locally within an optimized JIT trace
without loads and stores. Memory accesses that are needed to
keep the object state synchronized between interpreted and JIT-
compiled execution is performed only when entering and exit-
ing a JIT trace. The virtualizable annotation (lines 2 and 5 of
Figure 10) is able to eliminate lines 47–58 from Figure 11 re-
sulting in an almost 2⇥ performance improvement for 429.mcf
and 462.libquantum. Note that even greater performance im-
provements can potentially be had by also making the regis-
ter file virtualizable, however, a bug in the RPython translation
toolchain prevented us from evaluating this optimization.

V. EVALUATION

We evaluate Pydgin by implementing two ISAs using the Py-
dgin embedded-ADL: a simplified version of MIPS32 (SMIPS)
and ARMv5. These embedded-ADL descriptions are com-



bined with RPython optimization annotations, including those
described in Section IV, to generate high-performance, JIT-
enabled DBT-ISSs. Traditional interpretive ISSs without JITs
are also generated using the RPython translation toolchain in or-
der to help quantify the performance benefit of the meta-tracing
JIT. We compare the performance of these Pydgin-generated
ISSs against several reference ISSs.

To quantify the simulation performance of each ISS, we col-
lected total simulator execution time and simulated MIPS met-
rics from the ISSs running SPEC CINT2006 applications. All
applications were compiled using the recommended SPEC op-
timization flags (-O2) and all simulations were performed on
unloaded host machines; compiler and host-machine details can
be found in Table I. Three applications from SPEC CINT2006
(400.perlbench, 403.gcc, and 483.xalancbmk) would not build
successfully due to limited system call support in our Newlib-
based cross-compilers. When evaluating the high-performance
DBT-ISSs, target applications were run to completion using
datasets from the SPEC reference inputs. Simulations of the
interpretive ISSs were terminated after 10 billion simulated in-
structions since the poor performance of these simulators would
require many hours, in some cases days, to run these bench-
marks to completion. Total application runtimes for the trun-
cated simulations (labeled with Time* in Tables II and III) were
extrapolated using MIPS measurements and dynamic instruc-
tion counts. Experiments on a subset of applications verified the
simulated MIPS computed from these truncated runs provided a
good approximation of MIPS measurements collected from full
executions. This matches prior observations that interpretive
ISSs demonstrate very little performance variation across pro-
gram phases. Complete information on the SPEC CINT2006
application input datasets and dynamic instruction counts can
be found in Tables II and III.

Reference simulators for SMIPS include a slightly modified
version of the gem5 MIPS atomic simulator (gem5-smips) and
a hand-written C++ ISS used internally for teaching and re-
search purposes (cpp-smips). Both of these implementations
are purely interpretive and do not take advantage of any JIT-
optimization strategies. Reference simulators for ARMv5 in-
clude the gem5 ARM atomic simulator (gem5-arm), interpre-
tive and JIT-enabled versions of SimIt-ARM (simit-arm-nojit
and simit-arm-jit), as well as QEMU. Atomic models from
the gem5 simulator [5] were chosen for comparison due their
wide usage amongst computer architects. SimIt-ARM [21, 40]
was selected because it is currently the highest performance
ADL-generated DBT-ISS publicly available. QEMU has long
been held as the gold-standard for DBT simulators due to its
extremely high performance [4]. Note that QEMU achieves
it’s excellent performance at the cost of observability. Unlike
QEMU, all other simulators in this study faithfully track archi-
tectural state at an instruction level rather than block level.

A. SMIPS
Table II shows the complete performance evaluation results

for each SMIPS ISS while Figure 14 shows a plot of simula-
tor performance in MIPS. Pydgin’s generated interpretive and
DBT-ISSs are able to outperform gem5-smips and cpp-smips
by a considerable margin: around a factor of 8–9⇥ for pydgin-
smips-nojit and a factor of 25–200⇥ for pydgin-smips-jit. These

TABLE I. SIMULATION CONFIGURATIONS

Simulation Host

CPU Intel Xeon E5620
Frequency 2.40GHz
RAM 48GB @ 1066 MHz

Target Hosts

ISA Simplified MIPS32 ARMv5
Compiler Newlib GCC 4.4.1 Newlib GCC 4.3.3
Executable Linux ELF Linux ELF
System Calls Emulated Emulated

All experiments were performed on an unloaded target machine described
above. Both the ARMv5 and Simplified MIPS (SMIPS) ISAs used system call
emulation. SPEC CINT2006 benchmarks were cross-compiled using SPEC rec-
ommended optimization flags (-02).

speedups translate into considerable improvements in simula-
tion times for large applications in SPEC CINT2006. For exam-
ple, whereas 471.omnetpp would have taken eight days to sim-
ulate on gem5-smips, this runtime is drastically reduced down
to 21.3 hours on pydgin-smips-nojit and an even more impres-
sive 1.3 hours on pydgin-smips-jit. These improvements signif-
icantly increase the kind of applications researchers can experi-
ment with when performing design space exploration.

The interpretive ISSs tend to demonstrate relatively consis-
tent performance across all benchmarks: 3–4 MIPS for gem5-
smips and cpp-smips, 28–36 MIPS for pydgin-smips-nojit. Un-
like DBT-ISSs which that optimize away many overheads for
frequently encountered instruction paths, interpretive ISSs must
perform both instruction fetch and decode for every instruction
simulated. These overheads limit the amount of simulation time
variability, which is primarily caused by complexity differences
between instruction implementations.

Also interesting to note are the different implementation ap-
proaches used by each of these interpretive simulators. The
cpp-smips simulator is completely hand-coded with no gener-
ated components, whereas the gem5-smips decoder and instruc-
tion classes are automatically generated from what the gem5
documentation describes as an “ISA description language” (ef-
fectively an ad-hoc and relatively verbose ADL). As mentioned
previously, pydgin-smips-nojit is generated from a high-level
embedded-ADL. Both the generated gem5-smips and pydgin-
smips-nojit simulators are able to outperform the hand-coded
cpp-smips, demonstrating that generated simulator approaches
can provide both productivity and performance advantages over
simple manual implementations.

In addition to providing significant performance advantages
over gem5-smips, both Pydgin simulators provide considerable
productivity advantages as well. Because the gem5 instruction
descriptions have no interpreter, they must be first generated
into C++ before testing. This leaves the user to deduce whether
the source of an implementation bug resides in the instruction
definition, the code generator, or the gem5 simulator frame-
work. In comparison, Pydgin’s embedded-ADL is fully com-
pliant Python that requires no custom parsing and can be exe-
cuted directly in a standard Python interpreter. This allows Pyd-
gin ISA implementations to be tested and verified using Python
debugging tools prior to RPython translation into a fast C im-
plementation, leading to a much more user-friendly debugging
experience.



TABLE II. SMIPS PERFORMANCE RESULTS
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401.bzip2 chicken.jpg 198 15.1h 3.7 17.2h 3.2 0.87 1.6h 34 9.3 19.3m 171 47
429.mcf inp.in 337 1.1d 3.7 1.2d 3.2 0.87 3.3h 28 7.8 15.0m 373 102
445.gobmk 13x13.tst 290 21.7h 3.7 1.1d 3.1 0.83 2.6h 31 8.4 29.0m 167 45
456.hmmer nph3.hmm 1212 3.8d 3.7 4.5d 3.2 0.84 10.4h 32 8.7 26.5m 761 204
458.sjeng ref.txt 2757 8.5d 3.7 10.2d 3.1 0.83 1.0d 31 8.4 2.3h 337 90
462.libquantum 1397 8 2917 8.9d 3.8 10.9d 3.1 0.81 23.3h 35 9.1 1.3h 629 165
464.h264ref foreman_ref 679 2.2d 3.5 2.5d 3.2 0.90 5.7h 33 9.4 2.2h 87 25
471.omnetpp omnetpp.ini 2708 8.3d 3.8 10.0d 3.1 0.84 21.2h 36 9.4 1.3h 572 152
473.astar BigLakes2048.cfg 472 1.5d 3.8 1.7d 3.2 0.85 4.1h 32 8.4 16.5m 476 127

Benchmark datasets taken from the SPEC CINT2006 reference inputs. Time is provided in either minutes (m), hours (h), or days
(d) where appropriate. Time* indicates runtime estimates that were extrapolated from simulations terminated after 10 billion
instructions. DBT-ISSs (pydgin-smips-jit) were simulated to completion. vs. g5 = simulator performance normalized to gem5.

TABLE III. ARMV5 PERFORMANCE RESULTS

simit simit pydgin pydgin
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401.bzip2 195 23.4h 2.3 52.2m 62 27 7.3m 445 192 2.5h 22 9.4 0.35 32.6m 100 43 0.22 3.0m 1085
429.mcf 374 1.9d 2.3 2.0h 52 23 19.9m 314 135 5.0h 21 9.0 0.40 15.5m 401 173 1.28 9.8m 637
445.gobmk 324 1.7d 2.2 1.8h 50 22 23.5m 230 103 4.5h 20 8.9 0.40 1.3h 70 31 0.30 14.0m 386
456.hmmer 1113 6.0d 2.1 5.9h 52 24 46.3m 400 187 14.6h 21 9.9 0.41 30.5m 607 284 1.52 16.7m 1108
458.sjeng 2974 15.1d 2.3 16.7h 49 22 2.9h 287 126 1.7d 20 8.8 0.41 8.8h 94 41 0.33 1.8h 447
462.libquantum 3070 14.4d 2.5 15.6h 55 22 1.9h 459 186 1.6d 22 8.9 0.40 1.3h 659 267 1.44 41.9m 1220
464.h264ref 753 3.8d 2.3 4.2h 50 22 31.7m 396 173 10.2h 21 9.0 0.42 21.8h 9.6 4.2 0.02 16.2m 773
471.omnetpp 1282 5.8d 2.6 5.3h 68 26 1.5h 233 90 14.1h 25 9.8 0.37 1.0h 355 138 1.52 1.5h 240
473.astar 434 2.0d 2.5 2.2h 55 22 23.3m 310 126 5.5h 22 8.8 0.40 29.5m 245 100 0.79 13.8m 526

Benchmark datasets taken from the SPEC CINT2006 reference inputs (shown in Table II). Time is provided in either minutes (m), hours (h), or days (d)
where appropriate. Time* indicates runtime estimates that were extrapolated from simulations terminated after 10 billion instructions. DBT-ISSs (simit-
arm-jit, pydgin-arm-jit, and QEMU) were simulated to completion. vs. g5 = simulator performance normalized to gem5. vs. s0 = simulator performance
normalized to simit-arm-nojit. vs. sJ = simulator performance normalized to simit-arm-jit.

Enabling JIT optimizations in the RPython translation
toolchain results in a considerable improvement in Pydgin-
generated ISS performance: from 28–36 MIPS for pydgin-
smips-nojit up to 87–761 MIPS for pydgin-smips-jit. Compared
to the interpretive ISSs, pydgin-smips-jit demonstrates a much
greater range of performance variability that depends on the
characteristics of the application being simulated. The RPython
generated meta-tracing JIT is designed to optimize hot loops
and performs best on applications that execute large numbers
of frequently visited loops with little branching behavior. As
a result, applications with large amounts of irregular control
flow cannot be optimized as well as more regular applications.
For example, although 464.h264ref shows decent speedups on
pydgin-smips-jit when compared to the interpretive ISSs, its
performance in MIPS lags that of other applications by a wide
margin. Improving DBT-ISS performance on challenging ap-
plications such as 464.h264ref remains important future work.

B. ARMv5

The ARMv5 ISA demonstrates significantly more complex
instruction behavior than the relatively simple SMIPS ISA. Al-
though still a RISC ISA, ARMv5 instructions include a number
of interesting features that greatly complicate instruction pro-

cessing such as pervasive use of conditional instruction flags
and fairly complex register addressing modes. This additional
complexity makes ARMv5 instruction decode and execution
much more difficult to emulate efficiently when compared to
SMIPS. This is demonstrated in the relative performance of the
two gem5 ISA models shown in Tables II and III: gem5-arm
performance never exceeds 2.6 MIPS whereas gem5-smips av-
erages 3.7 MIPS. Note that this trend is also visible when com-
paring pydgin-arm-nojit (20–25 MIPS) and pydgin-smips-nojit
(28–36 MIPS). Complete performance results for all ARMv5
ISSs can be found in Table III and Figure 15.

To help mitigate some of the additional decode complexity of
the ARMv5 ISA, ISS implementers can create more optimized
instruction definitions that deviate from the pseudo-code form
described in the ARMv5 ISA manual (as previously discussed
in Section III). These optimizations and others enable the SimIt-
ARM ISS to achieve simulation speeds of 49–68 MIPS for
simit-arm-nojit and 230–459 MIPS for simit-arm-jit. In com-
parison, Pydgin’s more straightforward ADL descriptions of the
ARMv5 ISA result in an ISS performance of 20–25 MIPS for
pydgin-arm-nojit and 9–659 MIPS for pydgin-arm-jit.

Comparing the interpretive versions of the SimIt-ARM and
Pydgin generated ISSs reveals that simit-arm-nojit is able to



Figure 14. SMIPS ISS Performance

Figure 15. ARMv5 ISS Performance

outperform pydgin-arm-nojit by a factor of 2⇥ on all applica-
tions. The fetch and decode overheads of interpretive simula-
tors make it likely much of this performance improvement is
due to SimIt-ARM’s decode optimizations. However, decode
optimizations should have less impact on DBT-ISSs which are
often able to eliminate decode entirely.

The DBT-ISS versions of SimIt-ARM and Pydgin ex-
hibit comparatively more complex performance characteris-
tics: simit-arm-jit is able to consistently provide good speedups
across all applications while pydgin-arm-jit has a much greater
range of variability. Overall pydgin-arm-jit is able to out-
perform simit-arm-jit on approximately half of the applica-
tions, including considerable performance improvements of
1.44–1.52⇥ for the applications 456.hmmer, 462.libquantum,
and 471.omnetpp. However, pydgin-arm-jit performs relatively
poorly on 445.gobmk, 458.sjeng, and especially 464.h264ref
(all under 100 MIPS), while simit-arm-jit never does worse than
230 MIPS on any benchmark.

The variability differences displayed by these two DBT-ISSs
is a result of the distinct JIT architectures employed by Pyd-
gin and SimIt-ARM. Unlike pydgin-arm-jit’s meta-tracing JIT
which tries to detect hot loops and highly optimize frequently
taken paths through them, simit-arm-jit uses a page-based ap-
proach to JIT optimization that partitions an application binary
into equal sized bins, or pages, of sequential program instruc-
tions. Once visits to a particular page exceed a preset threshold,
all instructions within that page are compiled together into a
single optimized code block. A page-based JIT provides two
important advantages over a tracing JIT: first, pages are con-
strained to a fixed number of instructions (on the order of 1000)
which prevents unbounded trace growth for irregular code; sec-
ond, pages enable JIT-optimization of code that does not contain
loops. While this approach to JIT design prevents SimIt-ARM
from reaching the same levels of optimization as a trace-based
JIT on code with regular control flow, it allows for more consis-
tent performance across a range of application behaviors.

One particularly bad example of pathological behavior in Py-
dgin’s tracing JIT is 464.h264ref, the only application to per-
form worse on pydgin-arm-jit than pydgin-arm-nojit (9.6 MIPS
vs. 21 MIPS). The cause of this performance degradation is a
large number of tracing aborts in the JIT due to traces growing
too long, most likely due to irregular code with complex func-
tion call chains. Tracing aborts cause pydgin-arm-jit to incur the
overheads of tracing without the ability to amortize these over-
heads by executing optimized JIT-generated code. A similar
problem is encountered by tracing JITs for dynamic languages
and is currently an active area of research. We hope to look
into into potential approaches to mitigate this undesirable JIT
behavior in future work.

QEMU also demonstrates a wide variability in simulation
performance depending on the application (240–1220 MIPS),
however it achieves a much higher maximum performance
and manages to outperform simit-arm-jit and pydgin-arm-jit
on nearly every application except for 471.omnetpp. Although
QEMU has exceptional performance, it has a number of draw-
backs that impact its usability. Retargeting QEMU simulators
for new instructions requires manually writing blocks of low-
level code in the tiny code generator (TCG) intermediate repre-
sentation, rather than automatically generating a simulator from
a high-level ADL. Additionally, QEMU sacrifices observability
by only faithfully tracking architectural state at the block level
rather than at the instruction level. These two limitations impact
the productivity of researchers interested in rapidly experiment-
ing with new ISA extensions.

VI. RELATED WORK

A considerable amount of prior work exists on improving the
performance of instruction set simulators through dynamic opti-
mization. Foundational work on simulators leveraging dynamic
binary translation (DBT) provided significant performance ben-
efits over traditional interpretive simulation [20, 30, 31, 57].
These performance benefits have been further enhanced by op-
timizations that reduce overheads and improve code generation
quality of JIT compilation [26, 29, 53]. Current state-of-the-art



ISSs incorporate parallel JIT-compilation task farms [7], mul-
ticore simulation with JIT-compilation [1, 40], or both [28].
These approaches generally require hand modification of the
underlying DBT engine in order to achieve good performance
for user-introduced instruction extensions.

In addition, significant research has been spent on improv-
ing the usability and retargetability of ISSs, particularly in the
domain of application-specific instruction-set processor (ASIP)
toolflows. Numerous frameworks have proposed using a high-
level architectural description language (ADL) to generate soft-
ware development artifacts such as cross compilers [3,14,18,19,
22, 25] and software decoders [23, 27, 41]. Instruction set sim-
ulators generated using an ADL-driven approach [3, 43, 44], or
even from definitions parsed directly from an ISA manual [6],
provide considerable productivity benefits but suffer from poor
performance when using a purely interpretive implementation
strategy. ADL-generated ISSs have also been proposed that in-
corporate various JIT-compilation strategies, including just-in-
time cache-compiled (JIT-CCS) [16, 32], instruction-set com-
piled (ISCS) [45, 47, 48], hybrid-compiled [46, 49], dynamic-
compiled [15, 38, 40], multicore and distributed dynamic-
compiled [21], and parallel DBT [56].

Penry et al. introduced the orthogonal-specification princi-
ple as an approach to functional simulator design that pro-
poses separating simulator specification from simulator imple-
mentation [34, 35]. This work is very much in the same spirit
as Pydgin, which aims to separate JIT implementation details
from architecture implementation descriptions by leveraging
the RPython translation toolchain. RPython has previously been
used for emulating hardware in the PyGirl project [17]. PyGirl
is a whole-system VM (WSVM) that emulates the processor,
peripherals, and timing-behavior of the Game Boy and had no
JIT, whereas our work focuses on JIT-enabled, timing-agnostic
instruction-set simulators.

VII. CONCLUSIONS

In an era of rapid development of increasingly specialized
system-on-chip platforms, instruction set simulators can sacri-
fice neither designer productivity nor simulation performance.
However, constructing ISS toolchains that are both highly pro-
ductive and high performance remains a significant research
challenge. To address these multiple challenges, we have intro-
duced Pydgin: a novel approach to the automatic generation of
high-performance DBT-ISSs from a Python-based embedded-
ADL. Pydgin creatively adapts an existing meta-tracing JIT
compilation framework designed for general-purpose dynamic
programming languages towards the purpose of generating
ISSs.

Pydgin opens up a number of interesting directions for fu-
ture research. Further performance optimizations are certainly
possible, including: using Python meta-programming during
translator elaboration to further specialize instruction defini-
tions (e.g., automatically generating variants for ARM S and
I instruction bits as SimIt-ARM does manually); inserting ad-
ditional RPython annotations in the embedded-ADL libraries;
or possibly even modifying the RPython translation toolchain
itself. One significant benefit of the Pydgin approach is that any
improvements applied to the actively developed RPython trans-
lation toolchain immediately benefit Pydgin ISSs after a simple

software download and retranslation, allowing Pydgin to track
ongoing advances in the JIT research community. Additionally,
we believe Pydgin’s meta-tracing JIT compiler approach sug-
gests a potential opportunity to use RPython to add simple tim-
ing models (e.g., simple pipeline or cache models) to an ISS,
then using the RPython translation toolchain to produce a JIT
which can optimize the performance of both the instruction ex-
ecution and the timing model.

The Pydgin framework along with the Pydgin SMIPS and
ARMv5 ISSs have been released under an open source software
license. Our hope is that the productivity and performance ben-
efits of Pydgin will make it a useful framework for the broader
research community.
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